Publication Type:

Journal Article


Proc Natl Acad Sci USA, Volume 94, Number 15, p.7791-7798 (1997)


We analyze the evolutionary dynamics of three of the best-studied plant nuclear multigene families. The data analyzed derive from the genes that encode the small subunit of ribulose-1,5-bisphosphate carboxylase (rbcS), the gene family that encodes the enzyme chalcone synthase (Chs), and the gene family that encodes alcohol dehydrogenases (Adh). In addition, we consider the limited evolutionary data available on plant transposable elements. New Chs and rbcS genes appear to be recruited at about 10 times the rate estimated for Adh genes, and this is correlated with a much smaller average gene family size for Adh genes. In addition, duplication and divergence in function appears to be relatively common for Chs genes in flowering plant evolution. Analyses of synonymous nucleotide substitution rates for Adh genes in monocots reject a linear relationship with clock time. Replacement substitution rates vary with time in a complex fashion, which suggests that adaptive evolution has played an important role in driving divergence following gene duplication events. Molecular population genetic studies of Adh and Chs genes reveal high levels of molecular diversity within species. These studies also reveal that inter- and intralocus recombination are important forces in the generation allelic novelties. Moreover, illegitimate recombination events appear to be an important factor in transposable element loss in plants. When we consider the recruitment and loss of new gene copies, the generation of allelic diversity within plant species, and ectopic exchange among transposable elements, we conclude that recombination is a pervasive force at all levels of plant evolution.